skip to main content


Search for: All records

Creators/Authors contains: "Shepherd, Simon G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An interplanetary shock can abruptly compress the magnetosphere, excite magnetospheric waves and field‐aligned currents, and cause a ground magnetic response known as a sudden commencement (SC). However, the transient (<∼1 min) response of the ionosphere‐thermosphere system during an SC has been little studied due to limited temporal resolution in previous investigations. Here, we report observations of a global reversal of ionospheric vertical plasma motion during an SC on 24 October 2011 using ∼6 s resolution Super Dual Auroral Radar Network ground scatter data. The dayside ionosphere suddenly moved downward during the magnetospheric compression due to the SC, lasting for only ∼1 min before moving upward. By contrast, the post‐midnight ionosphere briefly moved upward then moved downward during the SC. Simulations with a coupled geospace model suggest that the reversedvertical drift is caused by a global reversal of ionospheric zonal electric field induced by magnetospheric compression during the SC.

     
    more » « less
  2. Abstract

    Intense sunward (westward) plasma flows, named Subauroral Polarization Stream (SAPS), have been known to occur equatorward of the electron auroras for decades, yet their effect on the upper thermosphere has not been well understood. On the one hand, the large velocity of SAPS results in large momentum exchange upon each ion‐neutral collision. On the other hand, the low plasma density associated with SAPS implies a low ion‐neutral collision frequency. We investigate the SAPS effect during non‐storm time by utilizing a Scanning Doppler Imager (SDI) for monitoring the upper thermosphere, SuperDARN radars for SAPS, all‐sky imagers and DMSP Spectrographic Imager for the auroral oval, and GPS receivers for the total electron content. Our observations suggest that SAPS at times drives substantial (>50 m/s) westward winds at subauroral latitudes in the dusk‐midnight sector, but not always. The occurrence of the westward winds varies withAEindex, plasma content in the trough, and local time. The latitudinally averaged wind speed varies from 60 to 160 m/s, and is statistically 21% of the plasma. These westward winds also shift to lower latitude with increasingAEand increasing MLT. We do not observe SAPS driving poleward wind surges, neutral temperature enhancements, or acoustic‐gravity waves, likely due to the somewhat weak forcing of SAPS during the non‐storm time.

     
    more » « less
  3. Abstract

    Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large‐scale SAPS (LS‐SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0456 UT. In the conjugate magnetosphere, a large SAPS electric field (∼8 mV/m) pointing radially outward, a local magnetic field dip, and a dispersionless ion injection were observed simultaneously by VAP‐A atLshell = 3.5 andMLT = 20. The particle injection observed by VAP‐A is likely associated with the particle injection observed by the Geostationary Operational Environmental Satellite 15 near 20 MLT. Magnetic perturbations observed by the ground magnetometers and flow reversals observed by SuperDARN reveal that this mesoscale enhancement of SAPS developed near the Harang reversal and before the substorm onset. The observed complex signatures in both space and ground can be explained by a two‐loop current wedge generated by the perturbed plasma pressure gradient and the diamagnetic effect of the structured ring current following particle injection.

     
    more » « less